REARRANGEMENT INVARIANT SUBSPACES OF LORENTZ FUNCTION SPACES

BY N. L. CAROTHERS[†]

ABSTRACT

The main result is that for $2 \le q \le p < \infty$ the only subspaces of the Lorentz function space $L_{pq}[0,1]$ which are isomorphic to r.i. function spaces on [0,1] are, up to equivalent renormings, $L_{pq}[0,1]$ and $L_2[0,1]$.

1. Introduction

In this paper we prove that the only subspaces of the classical Lorentz function spaces $L_{pq}[0,1]$, $2 \le q \le p < \infty$, which are isomorphic to rearrangement invariant function spaces on [0, 1] are, up to equivalent renormings, $L_{pq}[0, 1]$ and $L_2[0, 1]$. This extends a result of W. B. Johnson, B. Maurey, G. Schechtman and L. Tzafriri [7] which states that for $2 \le p < \infty$ the only r.i. subspaces of $L_p[0,1]$ are, up to equivalent renormings, $L_p[0,1]$ and $L_2[0,1]$. In fact, we actually prove a similar result for a much larger class of Lorentz function spaces which includes the Lorentz-Zygmund spaces $L_{pq;\alpha}$, $2 \le q , <math>0 \le \alpha < \infty$ [3]. Our main result is Theorem 1 which states that for regular, submultiplicative weights w(x)and $2 \le p < \infty$, the only r.i. subspaces of the Lorentz function space $L_{w,p}[0,1]$ are, up to equivalent renormings, $L_{w,p}[0,1]$ and $L_2[0,1]$. Theorem 2 gives the converse, that is, if w(x) is regular, $1 , and if <math>L_{w,p}[0,1]$ and $L_2[0,1]$ are the only r.i. subspaces of $L_{w,p}[0,1]$, then w(x) is submultiplicative. That submultiplicativity is the proper condition to place on the weight w(x) is suggested by the analogous statement for Orlicz function spaces from [7], and also by similar results of Z. Altshuler, P. G. Cassaza and B. L. Lin [2] on Lorentz sequence spaces. In the final section an example is given which indicates the difficulty in classifying subspaces of $L_{w,p}[0,1]$ when w(x) is not submultiplicative.

Our notation is standard and follows that of [8] and [7]. We denote by |A| the Lebesgue measure of a measurable set A of \mathbb{R} . If f is a measurable function we denote by d_f the distribution function of |f|, that is,

'This is part of the author's Ph.D. thesis, prepared at the Ohio State University under the supervision of W. B. Johnson.

Received March 13, 1981

$$d_f(t) = |\{s : |f(s)| > t\}|,$$

and we denote by f^* the decreasing rearrangement of |f|, that is,

$$f^*(t) = \inf\{s > 0 : d_f(s) \le t\}.$$

Let w(x) be a non-increasing, strictly positive function on I = (0, 1] or $(0, \infty)$ for which $\int_0^1 w(t)dt = 1$, and let $S(x) = \int_0^x w(t)dt$. Then for $1 \le p < \infty$ the norm of a function f in $L_{w,p}(I)$ is defined by

$$||f|| = \left(\int_{t} f^{*}(t)^{p} w(t) dt\right)^{1/p}.$$

A simple integration-by-parts argument shows that we may also write

$$||f|| = \left(\int_0^\infty S(d_f(t))d(t^p)\right)^{1/p}.$$

The weight w(x) is called regular if $\inf_x S(2x)/S(x) > 1$, and submultiplicative if there is a constant $C < \infty$ such that $w(xy) \le Cw(x)w(y)$ for all x, y.

Note that for $w(t) = (q/p)t^{q/p-1}$, $1 \le q \le p < \infty$, we have $L_{w,q}(I) \equiv L_{pq}(I)$, and for $w(t) = c(p,q,\alpha) \cdot t^{q/p-1} \cdot (1+|\log t|)^{\alpha q}$, $1 \le q , <math>0 \le \alpha < \infty$, we have $L_{w,q}(I) \equiv L_{pq;\alpha}(I)$, where $c(p,q,\alpha)$ is a constant chosen to satisfy $\int_0^1 w(t)dt = 1$. Also note that in each of these cases w(x) is both regular and submultiplicative.

It is easy to see that $L_{w,p}$ is p-convex with constant 1 for any weight w(x) and any $1 \le p < \infty$; the following theorem, which is a synthesis of known results, gives necessary and sufficient conditions for $L_{w,p}$ to be q-concave for some $q < \infty$:

THEOREM ([6], [1]). For 1 , the following are equivalent:

- (i) $L_{w,p}$ is uniformly convex,
- (ii) $L_{w,p}$ is q-concave for some $q < \infty$,
- (iii) w(x) is regular,
- (iv) there exists a constant $C < \infty$ such that $xw(x) \le S(x) \le Cxw(x)$ for all x.

Consequently [8, theorem 2.c.6] for p > 1 the Haar system $(h_{n,i})_{n=0}^{\infty}, \sum_{j=1}^{2n}$, defined by $h_{0,1} \equiv 1$ and for $n \ge 1$ by

$$h_{n,i}(t) = \begin{cases} 1 & \text{if } t \in [(2i-2)2^{-n-1}, (2i-1)2^{-n-1}), \\ -1 & \text{if } t \in [(2i-1)2^{-n-1}, 2i \cdot 2^{-n-1}), \\ 0 & \text{otherwise,} \end{cases}$$

forms an unconditional basis for $L_{w,p}[0,1]$ exactly when w(x) is regular.

We will also make use of the dilation operators D_s , $0 < s < \infty$. If $I = [0, \infty)$ these operators are defined by $(D_s f)(t) = f(t/s)$, $0 \le t < \infty$, and if I = [0, 1] we define

$$(D_s f)(t) = \begin{cases} f(t/s) & \text{if } 0 \le t \le s, \\ 0 & \text{if } s < t \text{ (in case } s < 1), \end{cases}$$

for $0 \le t \le 1$. Note that if $I = [0, \infty)$ or I = [0, 1] and $s \le 1$, the distribution of $D_s f$ is $s \cdot d_f$. Indeed,

$$|\{t: |D_s f|(t) > a\}| = |\{t: |f(t/s)| > a\}|$$

= $s \cdot |\{t: |f(t)| > a\}|$.

2. The proof of our main result requires the use of several deep results from [7]. Of particular importance are theorem 2.1 and theorem 6.1 of [7] which we state below:

THE CLASSIFICATION FORMULA. For every $M \ge 1$, $C \ge 1$ and every integer $m \ge 1$ there exists a constant $D = D(M, C, m) < \infty$ such that if $(y_i)_{i=1}^n$ is a finite M-symmetric normalized basic sequence in a Banach lattice Y which is 2-convex and 2m-concave with both constants $\le C$ then, for every choice of scalars $(a_i)_{i=1}^n$,

$$D^{-1} \cdot \left\| \sum_{i=1}^{n} a_{i} y_{i} \right\| \leq \max \left\{ \left(\sum_{\pi} \left\| \max_{1 \leq i \leq n} \left| a_{\pi(i)} y_{i} \right| \right\|^{2m} / n! \right)^{1/2m}, \left\| \sum_{i=1}^{n} y_{i} \right\| \cdot \left(\sum_{i=1}^{n} \left| a_{i} \right|^{2} / n \right)^{1/2} \right\}$$

$$\leq D \cdot \left\| \sum_{i=1}^{n} a_{i} y_{i} \right\|,$$

where Σ_{π} refers to summation over all permutations π of $\{1, \dots, n\}$.

THE CLASSIFICATION THEOREM. Let X be a r.i. function space on [0,1] for which the Haar system is an unconditional basis. Let Y be a r.i. function space on [0,1] or $[0,\infty)$ which does not contain uniformly isomorphic copies of l_{∞}^n for all n. If X embeds isomorphically into Y then one of the following three (non-exclusive) possibilities holds:

(i) There exists a constant $C < \infty$ such that

$$||f||_Y \le C||f||_X$$

for every $f \in X$.

(ii) The Haar system in X is equivalent to a sequence of disjointly supported functions in Y.

(iii) X is equal to $L_2[0,1]$ or $L_2[0,\infty)$ up to an equivalent renorming.

The proof of Theorem 1 begins with an application of the Classification Theorem; however, Case (ii) may be excluded when $Y = L_{w,p}[0,1]$ for w(x) regular and $p \ge 2$. For p > 2 this is easy to see. Indeed, by [5], every disjoint normalized sequence in $L_{w,p}[0,1]$ has a subsequence equivalent to the unit vector basis of l_p . In particular, $L_{w,p}[0,1]$ (p > 2) cannot contain a disjoint sequence equivalent to the unit vector basis of l_2 . For p = 2 we need the following lemma which was first noticed by G. Schechtman:

LEMMA 1. Let X be a r.i. function space on [0,1] for which the Haar system is an unconditional basis. If the Haar basis in X is equivalent to a sequence of disjoint functions in $L_{w,2}[0,1]$, then X is equal to $L_2[0,1]$ up to an equivalent renorming.

PROOF. Suppose that $(h_{n,i})$, the Haar basis in X, is C-equivalent to a disjointly supported sequence $(f_{n,i})$ in $L_{w,2}[0,1]$. We first show that there is an infinite subset $M \subset \mathbb{N}$ so that

(*)
$$\left\| \sum_{n \in M} \sum_{i=1}^{2^n} a_{n,i} h_{n,i} \right\|_{X} \sim \left(\sum_{n \in M} \left\| \sum_{i=1}^{2^n} a_{n,i} h_{n,i} \right\|_{X}^{2} \right)^{1/2},$$

for every choice of scalars $(a_{n,i})_{n\in M,i=1}^{2^n}$, where $D=2C^2$. To see this, choose inductively a subsequence (n_k) and a sequence $\varepsilon_k \searrow 0$ which for $k \ge 1$ satisfy:

- (1) $\sum_{i=1}^{2^{n_k}} |\operatorname{supp} f_{n_k,i}| < \varepsilon_k$, and
- (2) if $|A| < \varepsilon_{k+1}$, then $\|\chi_A \cdot f\| < \frac{1}{2} \|f\|$ for $f \in [f_{n_k,l}]_{i=1}^{2^{n_k}}$. Set $M = \{n_k : k \ge 1\}$. Then, for any scalars $(a_{n_i})_{n \in M_i = 1}$, we have

$$\left\| \sum_{n \in M} \sum_{i=1}^{2^{n}} a_{n,i} h_{n,i} \right\|_{X}^{2} \ge C^{-2} \cdot \left\| \sum_{n \in M} \sum_{i=1}^{2^{n}} a_{n,i} f_{n,i} \right\|^{2}$$

$$\ge C^{-2} \cdot \sum_{k=1}^{\infty} \int_{e_{k+1}}^{e_{k}} \left(\sum_{i=1}^{2^{n}_{k}} a_{n,i} f_{n_{k},i} \right)^{*2} (t) w(t) dt$$

$$\ge \frac{3}{4} C^{-2} \sum_{n \in M} \left\| \sum_{i=1}^{2^{n}} a_{n,i} f_{n,i} \right\|^{2}$$

$$\ge \frac{3}{4} C^{-4} \cdot \sum_{n \in M} \left\| \sum_{i=1}^{2^{n}} a_{n,i} h_{n,i} \right\|_{X}^{2},$$

and since $L_{w,2}[0,1]$ is 2-convex,

$$\left\| \sum_{n \in M} \sum_{i=1}^{2^{n}} a_{n,i} h_{n,i} \right\|_{X}^{2} \leq C^{2} \left\| \sum_{n \in M} \sum_{i=1}^{2^{n}} a_{n,i} f_{n,i} \right\|^{2}$$

$$\leq C^{2} \cdot \sum_{n \in M} \left\| \sum_{i=1}^{2^{n}} a_{n,i} f_{n,i} \right\|^{2}$$

$$\leq C^{4} \cdot \sum_{n \in M} \left\| \sum_{i=1}^{2^{n}} a_{n,i} h_{n,i} \right\|_{X}^{2}$$

Now for $l = 0, 1, 2, \cdots$ and $k = 1, \cdots, 2^{l}$, define

$$x_{l,k}(t) = \begin{cases} h_{n_{k+1},i}(t) & \text{if } t \in [(k-1)2^{-l}, k2^{-l}) \cap \text{supp } h_{n_{k+1},i} \\ 0 & \text{otherwise.} \end{cases}$$

Then the sequence $(x_{l,k})_{k=1}^{2^l}$ has the same distribution as $(h_{l,k})_{k=1}^{2^l}$, and hence for any scalars $(a_k)_{k=1}^{2^l}$,

$$\left\| \sum_{k=1}^{2^{l}} a_{k} x_{l,k} \right\|_{X} = \left\| \sum_{k=1}^{2^{l}} a_{k} h_{l,k} \right\|_{X},$$

while from (*) we have

$$\left\| \sum_{k=1}^{2^l} a_k x_{l,k} \right\|_{X} \stackrel{o}{\sim} \left(\sum_{k=1}^{2^l} |a_k|^2 \|x_{l,k}\|_{X}^2 \right)^{1/2}.$$

Thus, X is equal to $L_2[0,1]$ up to an equivalent renorming.

REMARK 1. The Classification Theorem now yields that, for w(x) regular and $1 , <math>L_{w,p}[0,1]$ has unique r.i. structure on [0,1]. That is, if X is a r.i. function space on [0,1] which is isomorphic to $L_{w,p}[0,1]$, then $X = L_{w,p}[0,1]$ up to an equivalent norm.

A major reduction in the proof of Theorem 1 entails comparing an arbitrary finite symmetric sequence in $L_{w,p}$ to a disjointly supported, equi-distributed sequence. The next lemma indicates the behavior of such a sequence when the weight w(x) is submultiplicative (or, what is equivalent for w(x) regular, when S(x) is submultiplicative).

For $n = 1, 2, \dots$ and $i = 1, \dots, n$ we denote by $z_{n,i}$ the characteristic function of the interval [(i-1)/n, i/n).

LEMMA 2. Let S(x) be submultiplicative with constant C and let $1 \le p < \infty$. If $(f_i)_{i=1}^n$ is a disjointly supported sequence in $L_{w,p}$ and each f_i has the same distribution, then

$$\left\| \sum_{i=1}^{n} a_{i} f_{i} \right\| \leq C^{1/p} \left\| \sum_{i=1}^{n} f_{i} \right\| \cdot \left\| \sum_{i=1}^{n} a_{i} z_{n,i} \right\|,$$

for every choice of scalars $(a_i)_{i=1}^n$.

PROOF. Since $(f_i)_{i=1}^n$ is a disjoint 1-symmetric sequence we have

$$\begin{split} \left\| \sum_{i=1}^{n} a_{i} f_{i} \right\| &= \left\| \sum_{i=1}^{n} a^{*}_{i} f_{i} \right\| = \left\| \left(\sum_{i=1}^{n} a^{*p}_{i} \left| f_{i} \right|^{p} \right)^{1/p} \right\| \\ &= \left\| \left\{ \sum_{k=1}^{n} \left(a^{*p}_{k} - a^{*p}_{k+1} \right) \left| \sum_{i=1}^{k} f_{i} \right|^{p} \right\}^{1/p} \right\| , \end{split}$$

where $(a_i^*)_{i=1}^n$ is the decreasing rearrangement of $(|a_i|)_{i=1}^n$ and $a_{n+1}^*=0$. And, since $L_{w,p}$ is p-convex with constant 1, it follows that

$$\left\| \sum_{i=1}^{n} a_{i} f_{i} \right\| \leq \left(\sum_{k=1}^{n} \left(a_{k}^{*p} - a_{k+1}^{*p} \right) \left\| \sum_{i=1}^{k} f_{i} \right\|^{p} \right)^{1/p}.$$

Now, since S(x) is submultiplicative, and since each f_i has the same distribution,

$$\left\| \sum_{i=1}^{k} f_{i} \right\|^{p} = \int_{0}^{\infty} S(kd_{f_{i}}(t))d(t^{p})$$

$$= \int_{0}^{\infty} S\left(\frac{k}{n}\sum_{i=1}^{n} d_{f_{i}}(t)\right)d(t^{p})$$

$$\leq C \cdot S\left(\frac{k}{n}\right) \cdot \left\| \sum_{i=1}^{n} f_{i} \right\|^{p}.$$

Combining this calculation with (**) we have

$$\begin{split} \left\| \sum_{i=1}^{n} a_{i} f_{i} \right\| & \leq \left(\sum_{k=1}^{n} \left(a_{k}^{*p} - a_{k+1}^{*p} \right) \right\| \sum_{i=1}^{k} f_{i} \right\|^{p} \right)^{1/p} \\ & \leq C^{1/p} \cdot \left\| \sum_{i=1}^{n} f_{i} \right\| \cdot \left(\sum_{k=1}^{n} \left(a_{k}^{*p} - a_{k+1}^{*p} \right) S\left(\frac{k}{n} \right) \right)^{1/p} \\ & = C^{1/p} \cdot \left\| \sum_{i=1}^{n} f_{i} \right\| \cdot \left\{ \sum_{k=1}^{n} a_{k}^{*p} \cdot \left[S(k/n) - S((k-1)/n) \right] \right\}^{1/p} \\ & = C^{1/p} \cdot \left\| \sum_{i=1}^{n} f_{i} \right\| \cdot \left\| \sum_{k=1}^{n} a_{k} z_{n,k} \right\|, \end{split}$$

which completes the proof.

REMARK 2. Note that (**) holds for any disjointly supported 1-symmetric sequence $(f_i)_{i=1}^n$ in $L_{w,p}$ for any $1 \le p < \infty$ and any weight w(x).

The next lemma is a simple observation which will prove useful in the sequel:

LEMMA 3. Let $(f_i)_{i=1}^n$ be disjointly supported in $L_{w,p}[0,\infty)$, $1 \le p < \infty$. Then,

$$\left\| \sum_{i=1}^{n} f_{i} \right\|^{p} \ge \frac{1}{n} \sum_{i=1}^{n} \|D_{n} f_{i}\|^{p}.$$

PROOF. Since S(x) is concave,

$$\left\| \sum_{i=1}^{n} f_{i} \right\|^{p} = \int_{0}^{\infty} S\left(\sum_{i=1}^{n} d_{f_{i}}(t)\right) d(t^{p})$$

$$\geq \frac{1}{n} \sum_{i=1}^{n} \int_{0}^{\infty} S(nd_{f_{i}}(t)) d(t^{p})$$

$$= \frac{1}{n} \sum_{i=1}^{n} \|D_{n}f_{i}\|^{p}.$$

We are now prepared to describe the process by which an arbitrary finite symmetric sequence in $L_{w,p}[0,1]$ may be compared to a disjointly supported, equi-distributed sequence. To this end we first require the notion of a symmetrically exchangeable sequence [4] (cf. section 1 and section 7 of [7] for applications of symmetrically exchangeable sequences in L_p -spaces and Orlicz spaces).

Let $(x_i)_{i=1}^n$ be a finite M-symmetric sequence in $L_{w,p}[0,1]$. Let Π_n be the set of all permutations of $\{1,\dots,n\}$ and let $\{I_{n,\varepsilon}: \pi \in \Pi_n, \varepsilon \in \{-1,1\}^n\}$ be a partition of [0,1] into mutually disjoint intervals, each of length $1/2^n n!$. Let $\psi_{n,\varepsilon}: I_{n,\varepsilon} \to [0,1]$ be the unique linear, increasing, onto map. For $1 \le i \le n$, define $y_i \in L_{w,p}[0,1]$ by

$$\mathbf{v}_{i}(t) = \varepsilon_{i} \mathbf{x}_{\pi(i)}(\psi_{\pi,\varepsilon}(t))$$
 for $t \in I_{\pi,\varepsilon}$.

 $(y_i)_{i=1}^n$ is a symmetrically exchangeable sequence; that is,

$$\operatorname{dist}(\varepsilon_1 y_{\pi(1)}, \cdots, \varepsilon_n y_{\pi(n)}) = \operatorname{dist}(y_1, \cdots, y_n) \quad \text{for any } \pi, \varepsilon.$$

In particular, each y_i has the same distribution and $(y_i)_{i=1}^n$ is a 1-symmetric sequence in $L_{w,p}[0,1]$.

It is shown in [4] and [7] that a finite M-symmetric sequence $(x_i)_{i=1}^n$ in L_p or in an Orlicz space is M-equivalent to the symmetrically exchangeable sequence $(y_i)_{i=1}^n$ obtained from $(x_i)_{i=1}^n$ by the above process. This is not the case even in L_{pq} , in general, as is demonstrated by example 10.7 of [7]. However, in the presence of a submultiplicative weight, a somewhat broader notion of equivalence is available. To see this, we will require further notation which will facilitate computations involving the square function $(\sum_{i=1}^n |a_iy_i|^2)^{1/2}$.

For $\pi \in \Pi_n$, define $J_{\pi} = \bigcup \{I_{\pi,\varepsilon} : \varepsilon \in \{-1,1\}^n\}$ and $\varphi_{\pi} : J_{\pi} \to [0,1]$ by $\varphi_{\pi} = \sum_{\varepsilon} \psi_{\pi,\varepsilon}$. Since $|J_{\pi}| = 1/n!$ and since $|\varphi_{\pi}^{-1}(A)| = |A|/n!$ for $A \subset [0,1]$, the distribution of $f(\varphi_{\pi}(t))$ is equal to $(1/n!)d_f$ for any measurable function f. In other words, if we define an operator D_{π} by

$$(D_{\pi}f)(t) = \begin{cases} f(\varphi_{\pi}(t)) & \text{if } t \in J_{\pi}, \\ 0 & \text{otherwise,} \end{cases}$$

then $D_{\pi}f$ and $D_{(1/n!)}f$ have the same distribution. Using this notation, a simple computation shows that $(\sum_{i=1}^{n} |a_i y_i|^2)^{1/2}$ may now be written as $\sum_{\pi} D_{\pi} (\sum_{i=1}^{n} |a_i x_{\pi(i)}|^2)^{1/2}$. In light of these remarks we have:

LEMMA 4. Let w(x) be regular and $1 \le p < \infty$. Given $M < \infty$, there exists a constant $C = C(M, w, p) < \infty$ such that if $(x_i)_{i=1}^n$ is a finite M-symmetric sequence in $L_{w,p}[0,1]$ and if $(y_i)_{i=1}^n$ is the symmetrically exchangeable sequence obtained from $(x_i)_{i=1}^n$ by the process described above, then

$$\left\|\sum_{i=1}^n a_i x_i\right\| \leq C \left\|\sum_{i=1}^n a_i y_i\right\|$$

for every choice of scalars $(a_i)_{i=1}^n$.

PROOF. Since w(x) is regular, $L_{w,p}[0,1]$ is q-concave for some $q < \infty$, and hence by [8, theorem 1.d.6] there exists a constant $C_1 = C_1(w, p) < \infty$ such that

$$\frac{1}{\sqrt{2}} \left\| \left(\sum_{i=1}^{k} |f_i|^2 \right)^{1/2} \right\| \leq \int_0^1 \left\| \sum_{i=1}^{k} r_i(t) f_i \right\| dt \leq C_1 \cdot \left\| \left(\sum_{i=1}^{k} |f_i|^2 \right)^{1/2} \right\|$$

for any $(f_i)_{i=1}^k$ in $L_{w,p}[0,1]$, where $(r_i)_{i=1}^k$ are the Rademacher functions on [0,1]. Thus,

$$\left\| \sum_{i=1}^{n} a_{i} y_{i} \right\| \ge \frac{1}{\sqrt{2}} \left\| \left(\sum_{i=1}^{n} |a_{i} y_{i}|^{2} \right)^{1/2} \right\|$$

$$= \frac{1}{\sqrt{2}} \left\| \sum_{\pi} D_{\pi} \left(\sum_{i=1}^{n} |a_{i} x_{\pi(i)}|^{2} \right)^{1/2} \right\|.$$

Hence, by Lemma 3 and by the fact that $(x_i)_{i=1}^n$ is M-symmetric, we get

$$\left\| \sum_{i=1}^{n} a_{i} y_{i} \right\| \geq \frac{1}{\sqrt{2}} \left(\frac{1}{n!} \sum_{\pi} \left\| \left(\sum_{i=1}^{n} |a_{i} x_{\pi(i)}|^{2} \right)^{1/2} \right\|^{p} \right)^{1/p}$$

$$\geq \frac{1}{\sqrt{2}} C_{1}^{-1} \cdot M^{-1} \cdot \left(\frac{1}{n!} \sum_{\pi} \left\| \sum_{i=1}^{n} a_{i} x_{\pi(i)} \right\|^{p} \right)^{1/p}$$

$$\geq \frac{1}{\sqrt{2}} \cdot C_{1}^{-1} \cdot M^{-2} \cdot \left\| \sum_{i=1}^{n} a_{i} x_{i} \right\|.$$

REMARK 3. It is not difficult to see that $\|(\sum_{i=1}^{n} |y_i|^2)^{1/2}\| = \|(\sum_{i=1}^{n} |x_i|^2)^{1/2}\|$, and hence

$$\left\| \sum_{i=1}^{n} y_{i} \right\| \leq C_{1} \left\| \left(\sum_{i=1}^{n} |y_{i}|^{2} \right)^{1/2} \right\| = C_{1} \cdot \left\| \left(\sum_{i=1}^{n} |x_{i}|^{2} \right)^{1/2} \right\|$$

$$\leq \sqrt{2} \cdot C_{1} \cdot M \cdot \left\| \sum_{i=1}^{n} |x_{i}| \right\|.$$

Our last lemma shows that the conclusion of Lemma 2 still holds for symmetrically exchangeable sequences which are not necessarily disjoint. It is convenient in what follows to have w(x) defined on all of $(0, \infty)$. If w(x) is regular and submultiplicative, a simple calculation shows that by defining $\tilde{w}(x) = w(x)$ if $x \le 1$ and $\tilde{w}(x) = w(1)$ for x > 1, we may assume w(x) is regular and submultiplicative on $(0, \infty)$.

LEMMA 5. Let w(x) be regular and submultiplicative and let $2 \le p < \infty$. There exists a constant $C = C(w, p) < \infty$ such that if $(y_i)_{i=1}^n$ is a symmetrically exchangeable sequence in $L_{w,p}[0,1]$, then

$$\left\|\sum_{i=1}^n a_i y_i\right\| \leq C \cdot \left\|\sum_{i=1}^n y_i\right\| \cdot \left\|\sum_{i=1}^n a_i z_{n,i}\right\|$$

for every choice of scalars $(a_i)_{i=1}^n$.

PROOF. Let $(\tilde{y_i})_{i=1}^n$ be a disjointly supported sequence in $L_{w,p}[0,\infty)$ with $d_{\tilde{y_i}} = d_{y_i}$, $i = 1, \dots, n$. Then, by Lemma 2, there is a constant $C_2 = C_2(w, p) < \infty$ so that

$$\left\|\sum_{i=1}^n a_i \tilde{y}_i\right\| \leq C_2 \cdot \left\|\sum_{i=1}^n \tilde{y}_i\right\| \cdot \left\|\sum_{i=1}^n a_i z_{n,i}\right\|,$$

and by corollary 7.3 of [7],

$$\left\| \sum_{i=1}^n \tilde{y_i} \right\| \leq \sqrt{2} \cdot \left\| \sum_{i=1}^n y_i \right\|.$$

Using these observations and the fact that $(y_i)_{i=1}^n$ is symmetrically exchangeable, the Classification Formula simplifies substantially; in particular, there is a constant $C_3 = C_3(w, p) < \infty$ so that

$$\left\| \sum_{i=1}^{n} a_{i} y_{i} \right\| \leq C_{3} \cdot \max \left\{ \left\| \max_{1 \leq i \leq n} |a_{i} y_{i}| \right\|, \left\| \sum_{i=1}^{n} y_{i} \right\| \cdot \left(\sum_{i=1}^{n} |a_{i}|^{2} / n \right)^{1/2} \right\}$$

$$\leq C_{3} \cdot \max \left\{ \left\| \sum_{i=1}^{n} a_{i} \hat{y}_{i} \right\|, \left\| \sum_{i=1}^{n} y_{i} \right\| \cdot \left(\sum_{i=1}^{n} |a_{i}|^{2} / n \right)^{1/2} \right\}$$

$$\leq C_{2} \cdot C_{3} \cdot \sqrt{2} \cdot \left\| \sum_{i=1}^{n} y_{i} \right\| \cdot \max \left\{ \left\| \sum_{i=1}^{n} a_{i} z_{n,i} \right\|, \left\| \sum_{i=1}^{n} a_{i} z_{n,i} \right\|_{L_{2}} \right\}$$

$$= C_{2} \cdot C_{3} \cdot \sqrt{2} \cdot \left\| \sum_{i=1}^{n} y_{i} \right\| \cdot \left\| \sum_{i=1}^{n} a_{i} z_{n,i} \right\|,$$

the last inequality following from the fact that $||f|| \ge ||f||_{L_2}$ for $f \in L_{w,p}$ $(p \ge 2)$. \square

As a consequence of the preceding remarks we now have:

THEOREM 1. Let w(x) be regular and submultiplicative, and let $2 \le p < \infty$. Let X be a r.i. function space on [0,1] which is isomorphic to a subspace of $L_{w,p}[0,1]$. Then, up to an equivalent norm, $X = L_{w,p}[0,1]$ or $X = L_2[0,1]$.

PROOF. By the Classification Theorem and the remarks thereafter, if X is not isomorphic to $L_2[0,1]$, then there exists a constant $C_1 < \infty$ such that $||f|| \le C_1 \cdot ||f||_X$ for all $f \in X$.

Let T be an isomorphism from X into $L_{w,p}[0,1]$ and set $x_{n,i} = Tz_{n,i}$, $n = 1, 2, \dots, i = 1, \dots, n$. If $M = ||T|| \cdot ||T^{-1}||$, then for each n, $(x_{n,i})_{i=1}^n$ is M-symmetric in $L_{w,p}[0,1]$ with $||\Sigma_{i=1}^n x_{n,i}|| \le ||T||$.

For each n, let $(y_{n,i})_{i=1}^n$ be the symmetrically exchangeable sequence derived from $(x_{n,i})_{i=1}^n$ in the manner described preceding Lemma 4. By Lemma 4 and Lemma 5, there is a constant $C_2 = C_2(T, w, p) < \infty$ such that for all n and scalars $(a_i)_{i=1}^n$ we have

$$\left\| \sum_{i=1}^{n} a_{i} x_{n,i} \right\| \leq C_{2} \cdot \left\| \sum_{i=1}^{n} y_{n,i} \right\| \cdot \left\| \sum_{i=1}^{n} a_{i} z_{n,i} \right\|.$$

Now $\|\Sigma_{i=1}^n a_i z_{n,i}\|_X \le \|T^{-1}\| \cdot \|\Sigma_{i=1}^n a_i x_{n,i}\|$, and by Remark 3, $\|\Sigma_{i=1}^n y_{n,i}\| \le C_2 \|\Sigma_{i=1}^n x_{n,i}\| \le C_2 \|T\|$; hence, there is a constant $C_3 = C_3(T, w, p) < \infty$ such that

$$\left\| \sum_{i=1}^n a_i z_{n,i} \right\|_X \leq C_3 \cdot \left\| \sum_{i=1}^n a_i z_{n,i} \right\|$$

for all n and scalars $(a_i)_{i=1}^n$.

Since the dyadic simple functions are dense in $L_{w,p}[0,1]$, we have shown that

$$C_1^{-1} \cdot ||f|| \le ||f||_X \le C_3 \cdot ||f||$$
 for all $f \in X$,

which completes the proof.

In order to prove the converse of Theorem 1, we need only examine a certain class of sublattices of $L_{w,p}[0,1]$ (cf. section 7 of [7]). Given measurable functions f and g on [0,1], define $f \otimes g$ on $[0,1]^2$ by $(f \otimes g)(s,t) = f(s) \cdot g(t)$. Since $(f \otimes g)^*$ is again measurable on [0,1], we may define $||f \otimes g|| = ||(f \otimes g)^*||$. If $g \in L_{w,p}[0,1]$ is fixed, it is possible to define a r.i. function space X_g on [0,1] which is also a closed sublattice of $L_{w,p}[0,1]$. Indeed, the space X_g is defined to be the completion of the integrable simple functions under the norm $||f||_{X_g} = ||f \otimes g||$. To see that X_g is closed observe that since $L_{w,p}[0,1]$ is p-convex:

$$||f(s) \otimes g(t)|| = \left(\int_0^1 ||f(s) \otimes g(t+u)||^p du\right)^{1/p}$$

$$\geq \left\| \left(\int_0^1 ||f(s) \otimes g(t+u)||^p du\right)^{1/p} \right\| \quad \text{(where } t+u \text{ is taken mod 1)}$$

$$= ||f|| \cdot ||g||_{L_p}.$$

With this notation it is now possible to give a simple proof of:

THEOREM 2. Let w(x) be regular and $1 . If <math>X_s$ is isomorphic to $L_{w,p}[0,1]$ for all $g \in L_{w,p}[0,1]$, then S(x) is submultiplicative.

PROOF. By Remark 1, if X_g is isomorphic to $L_{w,p}[0,1]$ for ||g||=1, then there exists a constant $C_g < \infty$ such that $||f \otimes g|| = ||f||_{X_g} \le C_g \cdot ||f||$ for all $f \in L_{w,p}[0,1]$. Now, since the mapping $f \to f \otimes g$ is linear, the Uniform Boundedness Principle gives a constant $C < \infty$ such that $||f \otimes g|| \le C||f|| ||g||$ for all $f, g \in L_{w,p}[0,1]$. In particular, if $f = \chi_{[0,x]}$, $g = \chi_{[0,y]}$, $0 \le x$, $y \le 1$, we have:

$$S(xy) = ||f \otimes g||^p \le C^p ||f||^p ||g||^p = C^p S(x) S(y),$$

which completes the proof.

3. Finally, we present an example (adapted from [2]) which demonstrates the difficulty in classifying the subspaces X_s of $L_{w,p}[0,1]$ if w(x) is not submultiplicative.

EXAMPLE. Given $1 , there is a Lorentz function space <math>L_{w,p}[0,1]$ having a closed sublattice which is not isomorphic to any Lorentz function space $L_{w,p}[0,1]$.

PROOF. Let $1 and let <math>w(x) = x^{-1/2}(1 - \log x)^{-2}$. Let $g(x) = x^{-1/2p}$. Then $g \in L_{w,p}[0,1]$, since

$$\int_0^1 g(t)^p w(t) dt = \int_0^1 t^{-1} (1 - \log t)^{-2} dt = 1.$$

Now, since w(x) is regular, X_g is superreflexive. Hence, if X_g were isomorphic to some $L_{u,p}[0,1]$, then v(x) must be regular and by Remark 1 we must have $X_g = L_{u,p}[0,1]$ up to an equivalent norm. In particular, we have

$$xv(x) \sim \|\chi_{(0,x)}\|_{L_{u,p}}^{p} \sim \|\chi_{(0,x)}\|_{X_{g}}^{p}$$

$$= \int_{0}^{x} g(t/x)^{p} w(t) dt.$$

That is, $v(x) \sim x^{-1} \int_0^x g(t/x)^p w(t) dt = x^{-1/2} (1 - \log x)^{-1}$. Now a simple calculation yields that

$$(g \otimes g)^*(t) \sim t^{-1/2p} (1 - \log t)^{1/2p}$$

and thus $g \in X_g$ since

$$\int_0^1 (g \otimes g)^*(t)^p w(t) dt \sim \int_0^1 t^{-1} (1 - \log t)^{-3/2} dt = 2,$$

but $g \not\in L_{v,p}[0,1]$ since

$$\int_0^1 g(t)^p v(t) dt \sim \int_0^1 t^{-1} (1 - \log t)^{-1} dt = \infty.$$

This contradiction completes the proof.

REFERENCES

- Z. Altshuler, Uniform convexity in Lorentz sequence spaces, Israel J. Math. 20 (1975), 260-274.
- 2. Z. Altshuler, P. G. Cassaza and B. L. Lin, On symmetric basic sequences in Lorentz sequence spaces, Israel J. Math. 15 (1973), 140-155.
 - 3. C. Bennett and K. Rudnick, On Lorentz-Zygmund spaces, submitted.
- 4. J. Bretagnolle and D. Dacuhna-Castelle, Applications de l'étude de certaines formes aléatoires, Ann. École Normale Superieure 2 (1969), 437-480.
- 5. T. Figiel, W. B. Johnson and L. Tzafriri, On Banach lattices and spaces having local unconditional structure with applications to Lorentz function spaces, J. Approximation Theory 13 (1975), 297-312.
 - 6. I. Halperin, Uniform convexity in function spaces, Duke Math. J. 21 (1954), 195-204.
- 7. W. B. Johnson, B. Maurey, G. Schechtman and L. Tzafriri, Symmetric Structures in Banach Spaces, Memoirs Amer. Math. Soc., 1979.
 - 8. J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces II, Springer-Verlag, Berlin, 1979.

DEPARTMENT OF MATHEMATICS
THE OHIO STATE UNIVERSITY
COLUMBUS, OH 43210 USA